CRITICAL PATH INSTITUTE BIOMARKERS PROGRAM WORKSHOP 2019

Solutions to Drug Development Challenges: Utilizing Quantitative Approaches, Data Sharing, and Novel Biomarkers

Converting Data Into Knowledge

Bridging the Gap – Amanda Borens

How do we transform data → information? Especially when we have minimal data? Or when we are inundated with data?

Two Case Studies: Alzheimer's Disease, biomarkers, and longitudinal data Tuberculosis, ReSeqWHO, and genomics data

Alzheimer's Disease– *AD Interoperability*

Research Question:

"Which longitudinal biomarkers are related to specific clinicallyrelevant measures of progression and drug effects, at specific disease stages?"

Data challenge:

- Combine data from **disparate platforms** to answer question
- No common data dictionary or data model
- Create data marts on demand

Combining Disparate Data Sets

Combining data from different studies is *more than mapping variables*

Clinical Trial #1

SUBJID	SEX
0001	М
0002	F
0003	F
0004	М
0005	F

Observational Study			
ID	GENDER		
A1	Male		
A2	Male		
A3	Female		
A4	Female		
A5	Male		

EHR records				
PTID	GENDE			
0001	1			
0002	1			

2

2

0003

0004

0005

Pre-clinical Trial #2

USUBID	SEX
00011	0
00012	1
00013	1
00014	0
00015	1

Standardizing **dates** (eg. medications) **can be a quagmire** *Ranges, start only, month only, year only....*

Alzheimer's Disease

- CPAD clinical trials
- Observational studies
- Future expansion to include EHR data

Alzheimer's Disease

TABLE_NAME		DATA_TYPE	COLUMN_KEY	COLUMN_COMMENT	VALUES	•
				(FK: ad_stage.id) The standardized AD stage term for the		
ad_history	ad_stage_id	INT	MUL	diagnosis		
				The subgroup within the disease stage. Primarily used for		
ad_stage	subgroup	VARCHAR		MCI to indicate whether it is "early" or "late" stage MCI.	e.g., "Early MCI", "Late MCI"	
ad_stage	name	VARCHAR		The name of the Alzheimer's related disease stage	Normal, MCI, AD	
ad_stage	id	INT	PRI	Database assigned numeric ID		
ad_stage	dx_criteria	VARCHAR		The criteria used to make the AD stage diagnosis		
					Score Range: 0 - 12;	
					Not Done Codes: -4 = cognitive impairment reasons, -3 =	
adas_cog	word_recognition	INT		The number of incorrectly recognized words	physical reasons, -2 = subject refused, -1 = other reasons	
					Score Range: 0.0 - 10.0;	_
				The mean number of words not recalled on the 3 word recall	Not Done Codes: -4 = cognitive impairment reasons, -3 =	
adas_cog	word_recall	FLOAT		trials	physical reasons, -2 = subject refused, -1 = other reasons	
					Score Range: 0 - 5;	
					Not Done Codes: -4 = cognitive impairment reasons, -3 =	
adas_cog	word_find_difficulty	INT		Rating of the word finding difficulty in spontaneous speech	physical reasons, -2 = subject refused, -1 = other reasons	
				(FK: subject_visit.id) The visit during which the subject		
adas_cog	subject_visit_id	INT	MUL	performed the assessment		
adas_cog	study_day	INT		The study day the assessment occurred on		

Tuberculosis

Tuberculosis – Critical Path to TB Drug Regimens

Data challenge:

- Combine drug sensitivity testing results with genomic variants
- This enables statistical analyses to identify mutations that confer resistance
- Requires terabytes of data to elucidate relationships
- Epidemiologists and policy-makers may not have Big Data skills, making information inaccessible

Tuberculosis

DATA COLLABORATION[™] CENTER

Combining statistical resistance reports with global surveillance reports could guide first-line drug recommendations

- **C-Path's role:**
 - Reduce the data burden by providing tools that give scientists manageable output reports
 - Communicate the usefulness of the data with 'stories' in reports

Reduce the Data Burden

Tuberculosis

ReSeqTB in CODR platform – not yet optimized for analytics

- SQL algorithm for reporting SNPs that are associated with resistance ran in 3-8 hours
- ReSeqWHO with redesigned database schema, relations, and indexes
 - SQL algorithm for reporting SNPs that are associated with resistance ran in about 8 seconds

Combining statistical resistance reports with global surveillance reports could guide first-line drug recommendations

C-Path's role:

- Reduce the data burden by providing tools that give scientists manageable output reports
- Communicate the usefulness of the data with 'stories' in reports

Communicate with Reports

Amanda J. Borens Data Platform Architect | Development Manager <u>aborens@c-path.org</u>

Data Collaboration Center https://c-path.org/programs/dcc/