# The Coalition Against Major Diseases: Towards U.S. FDA Qualification of Hippocampal Volume as a Biomarker for Enrichment in Clinical Trials for Pre-dementia Stages of Alzheimer disease

Daniela J. Conrado<sup>1</sup>, Klaus Romero<sup>1</sup>, Brian Corrigan<sup>2</sup>, Kaori Ito<sup>2</sup>, Timothy Nicholas<sup>2</sup>, Danny Chen<sup>2</sup>, Mahesh N. Samtani<sup>3</sup>, Julie Stone<sup>4</sup>, Vikram Sinha<sup>4</sup>, Brian Willis<sup>5</sup>, Volker D. Kern<sup>1</sup>, Derek Hill<sup>6</sup>, Patricia E. Cole<sup>7</sup>, Gerald P. Novak<sup>3</sup>, Richard Meibach<sup>8</sup>, Dawn Matthews<sup>9</sup>, Adam Schwarz<sup>5</sup>, Zhiyong Xie<sup>2</sup>, Mark Forrest Gordon<sup>10</sup>, and Stephen P. Arnerić<sup>1</sup> - on behalf of the Coalition Against Major Diseases.

<sup>1</sup>Critical Path Institute, Tucson, AZ, USA; <sup>2</sup>Pfizer Inc., Groton, CT, USA; <sup>3</sup>Johnson & Johnson, New Brunswick, NJ, USA; <sup>6</sup>IXICO, London, UK; <sup>7</sup>Takeda Pharmaceuticals International, Deerfield, IL, USA; <sup>8</sup>Novartis Pharmaceuticals, Florham Park, NJ, USA; <sup>9</sup>ADM Diagnostics, Northbrook, IL, USA; <sup>10</sup>served as Advisor to CAMD.

## Background

- The development of drugs for pre-dementia stages of Alzheimer disease (AD) poses the challenge of patient heterogeneity in clinical trials (**Ref. 1**).
- Trial enrichment via prognostic biomarkers provides one means of addressing such a challenge (Ref. 2).
- Hippocampal atrophy is associated with progression from predementia to dementia and may help with trial enrichment.

## **Objectives**

To obtain regulatory qualification of baseline intracranial volumeadjusted hippocampal volume (ICV-HV) as an enrichment biomarker in pre-dementia trials, via a quantitative disease progression model.

## Methods

- Individual-level data from three studies the Alzheimer's Disease Neuroimaging Initiative (ADNI)-1 and ADNI-2 observational studies (**Ref. 3**), and the Investigation Into Delay to Diagnosis of Alzheimer's Disease With Exelon (InDDEx) clinical trial (Ref. 4) – have been integrated using the Clinical Data Interchange Standards Consortium (CDISC) therapeutic-area standards for AD.
- Volumetric magnetic resonance imaging (vMRI) data re-processed, and ICV-HV determined by the LEAP<sup>™</sup> and FreeSurfer<sup>™</sup> algorithms.
- Briefing documents and face-to-face meetings have been held with the U.S. Food and Drug Administration (FDA) to finalize the proposed context-of-use statement and the statistical analysis plan.

## Results

- The proposed context-of-use statement and endpoint is summarized in **Box 1**.
- The analysis dataset, consisting of pre-dementia patient-level data from ADNI-1, ADNI-2 and InDDEx, has been standardized and curated. Preliminary summary statistics are presented in Table 1.
- The temporal trajectory of Clinical Dementia Rating Sum of Boxes (CDR-SB) will be described by a mixed-effects statistical model, in which other covariates besides ICV-HV will be included (Figure 1).
- Monte Carlo clinical trial simulations will compare the statistical power by sample size in trials with and without ICV-HV enrichment, and a userfriendly graphical user interface will be developed.
- The full qualification document will be submitted to the FDA by 4Q-2017.

### Target Population: Patients with amnestic mild cognitive impairment

Mini-mental State Examination (MMSE) scores between 24-30 (inclusive), a memory complaint, objective memory loss measured by education adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in other cognitive domains, essentially preserved activities of daily living, and an absence of dementia (ADNI criteria).

#### **Intended Application:**

Clinical trial enrichment for pre-dementia Phase II and Phase III studies, based on the prognostic imaging biomarker ICV-HV as a predictor of disease progression.

#### **Endpoint:**

Clinical Dementia Rating Scale Sum-of-Boxes CDR-SB.

Summarized Context-of-Use and Endpoint Box 1

### **Table 1** Summary of Baseline Individual Characteristics (N=1132)

| Baseline*                        | ADNI-1                                         | ADNI-2                                          |        |
|----------------------------------|------------------------------------------------|-------------------------------------------------|--------|
| Sample size                      | 397                                            | 341                                             | 3      |
| MCI stage (%)                    | Late (100)                                     | Early (52), Late<br>(48)                        | Ν      |
| Sex (%)                          | Female (36),<br>Male (64)                      | Female (45),<br>Male (55)                       | F<br>N |
| Age in year, mean (range)        | 74 (54 <i>,</i> 89)                            | 71 (55 <i>,</i> 90)                             | 7      |
| Number of APOE e4 alleles<br>(%) | 0 (47), 1 (42), 2<br>(12)                      | 0 (49), 1 (39), 2<br>(11), Missing (1)          | Ν      |
| Amyloid-beta imaging (%)         | Negative (2),<br>Positive (2),<br>Missing (96) | Negative (40),<br>Positive (57),<br>Missing (3) | N      |
| ICV-HV in mm <sup>3</sup> , mean | 5112 (3237,                                    | 5498 (3128,                                     | 5      |
| (range)**                        | 7665)                                          | 8422)                                           | 7      |
| CDR-SB, mean (range)***          | 1.6 (0, 5)                                     | 1.5 (0.5, 5.5)                                  | 1      |

- \* In ADNI, sample sizes and baseline characteristics are presented according to the study that the individual was first enrolled.
- \*\* ICV-HV were determined using the LEAP<sup>TM</sup> algorithm.
- **\*\*\*** CDR-SB scores were assessed at the screening visit.





## Conclusion

- This ongoing biomarker qualification effort with the FDA highlights the importance of understanding disease progression quantitatively to support the qualification of ICV-HV for prognostic purposes.
- If ICV-HV demonstrates utility in clinical trial enrichment, qualification of this biomarker can streamline drug development programs in AD by insuring the right patients are enrolled into our trials.

## References

- 1. Petersen, R. C. et al. Mild cognitive impairment: ten years later. Arch. Neurol. 66, 1447–1455 (2009).
- 2. Hill, D. L. G. et al. Coalition Against Major Diseases/European Medicines Agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer's disease. Alzheimer's Dement. J. Alzheimer's Assoc. 10, 421–429.e3 (2014).
- 3. Weiner, M. W. et al. Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer's Dement. J. Alzheimer's Assoc. 11, e1-120 (2015).
- 4. Feldman, H. H. et al. Effect of rivastigmine on delay to diagnosis of Alzheimer's disease from mild cognitive impairment: the InDDEx study. Lancet Neurol. 6, 501–512 (2007).

## nDDEx

#### 94

- Not specified
- -emale (50),
- Male (50)
- 70 (53, 89)
- Aissing (100)
- Aissing (100)
- 5637 (3490, 707)

