

Krystyna Zaluski

A neuroscience digital health company - Measuring cognition accurately

Validated by over 30 years of neuroscience research A measure of cognitive function in over 100 indications

Trusted by the world's top pharmaceutical companies

Research tools

Tools for clinical and research trials to detect effects of drugs and environmental changes

At-home testing

Cognitive tests that can be completed by participants at home

High Frequency testing

Frequent monitoring of cognitive ability using wearable devices

In-clinic tools *Cognitive assessments for clinical use that can identify those who require further investigation*

Neuroanalytics Consultancy

We provide expertise in the design, analysis and interpretation of neuropsychological endpoints in cognitive studies and clinical trials with extensive experience using research and analytic approaches.

CANTAB COGNITIVE SCIENCE

CANTAB has been used to assess over

Specific to Cognitive Domain

Specific to Neural Mechanisms – Digital Biomarker

Sensitive to Disease State – Cognitive Signature

Cognition is subject to daily fluctuations

How to measure Cognition in the real world

Cognition Kit software enables an individual to complete an assessment on a range of mobile and wearable devices without having to visit a clinic or be helped by a health care professional.

Emotional recognition tasks to measure social cognition.

Cognition Kit – Validation Process

Developing a cognitive test for high-frequency testing

- □ N-back task activates a network of areas in the brain including frontal and parietal regions (Owen et al., 2005).
- There is significant variation across and within days on n-back performance, partly linked to mood and motivation (Brose et al., 2012).

Rose & Ebmeier. Journal of affective disorders 90 (2006): 149-161. Owen et al., Human brain mapping 25 (2005): 46-59. Brose, Schmiedek, Lövdén & Lindenberger. Emotion 12 (2012): 605.

Phase 1: Proof of concept study in healthy volunteers

Study design:

- □ 10 (4 females) aged 25-55
- Sensor data (heart rate, skin temperature, GSR) measured continuously between 0900-1900
- 4 CANTAB tasks (SWM, RVP, AST, ERT) and the PANAS administered each day after 1700
- Cognitive & mood assessment scheduled hourly

Presentation = 600 ms

Cormack et al, AAIC 2016

Phase 1: Detailed cognitive data

1-minute micro-tests capture meaningful across-time variation and correlate with gold-standard computerised tests.

Revealed issues with device and dynamic range of the test.

Findings from phase 1:

- □ A number of participants rapidly reached ceiling
- People were giving symbols names verbal recording of the stimuli, and familiarity with symbols over time
- Issues with the device used in the proof-of-concept: battery life, limited display, discontinuation

Questions for phase 2:

- Change of symbol design and larger bank of symbols to reduce availability of verbal strategies
- Could we titrate the difficulty level without increasing the n: role of symbol complexity, timing parameters, and number of symbols
- Decision to use Apple iWatch

Phase 2: Participant Experience

- Refining task to increase dynamic range
- Converted task for web-based testing with redesigned stimuli
- Crowd-sourced A-B testing using Amazon m-turk
- Series of experiments exploring the impact of task parameters on participant performance using:
 - Presentation time
 - Symbol design
 - Number of unique symbols

n = 994 participants aged 20-64 in total

n = 88 also completed CANTAB Spatial Working memory test and CANTAB PAL (episodic memory)

Phase 2: Cognitive Test Validity

Iterative A-B experimentation determined:

- Significant effect of stimulus presentation time on performance
- □ Significant impact of number of symbols in trial
- Symbol design (e.g. number of segments + arrangement) did not significantly impact performance

Correlations with CANTAB test — significant association with SWM, but not PAL.

Confirms sensitivity to working memory performance.

Phase 3: In-person testing and iterative design

- □ Would the same parameters work on the watch?
- □ How would participants perform over an extended time? Is the paradigm and testing schedule tolerable?
- □ What are some of the barriers to compliance? How can we make sure that patients understand the app and the tasks?

 \square N=7 subjects over 3 weeks.

- □ Apple watch
- □ N-back testing x3 times a day

Krystyna.Zaluski@camcog.com

