
REPRESENTING DEVICE DATA IN CDISC STANDARDS

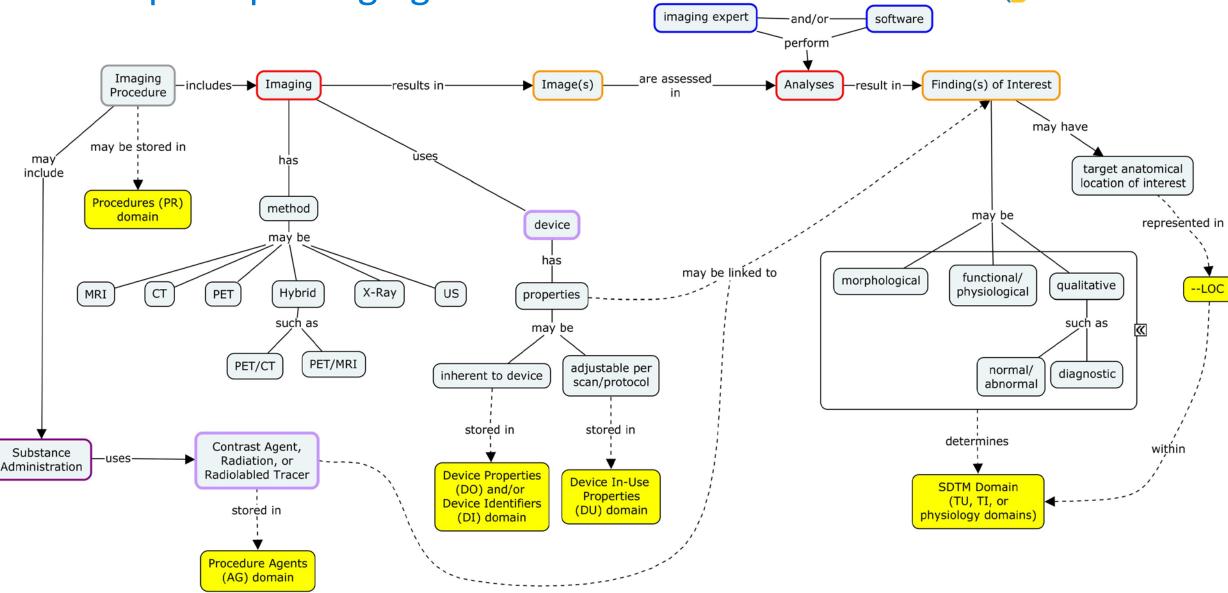
Jon Neville, Critical Path Institute

CDISC SDTM implementation guide for medical devices

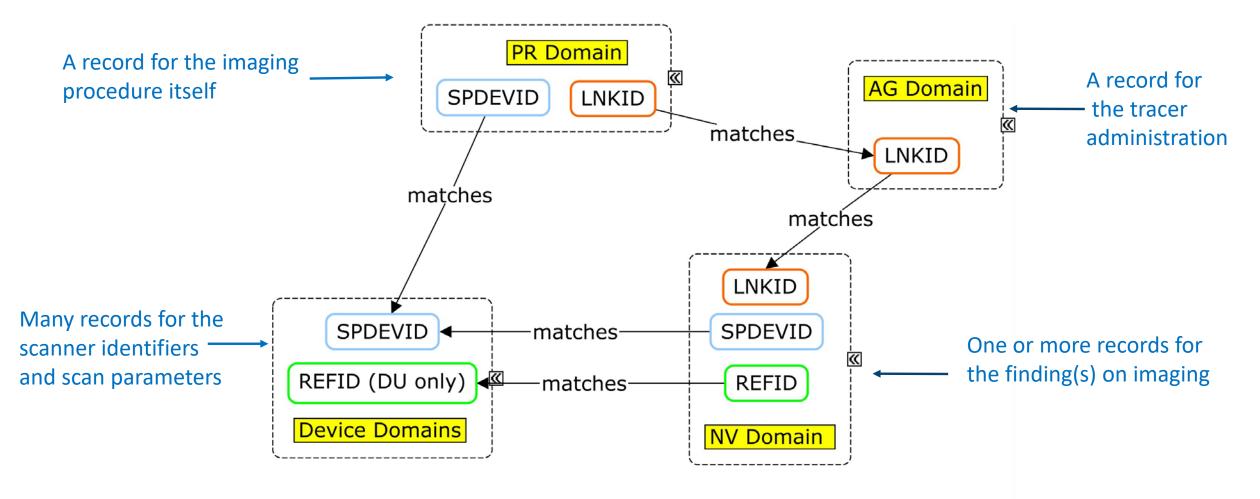
December 4, 2012

1.0 Provisional

Provisional SDTMIG-MD. Released version reflecting all changes and


praction identified during the comment period

Existing CDISC standards for neurodegeneration


Concept map: Imaging

CRITICAL PATH INSTITUTE

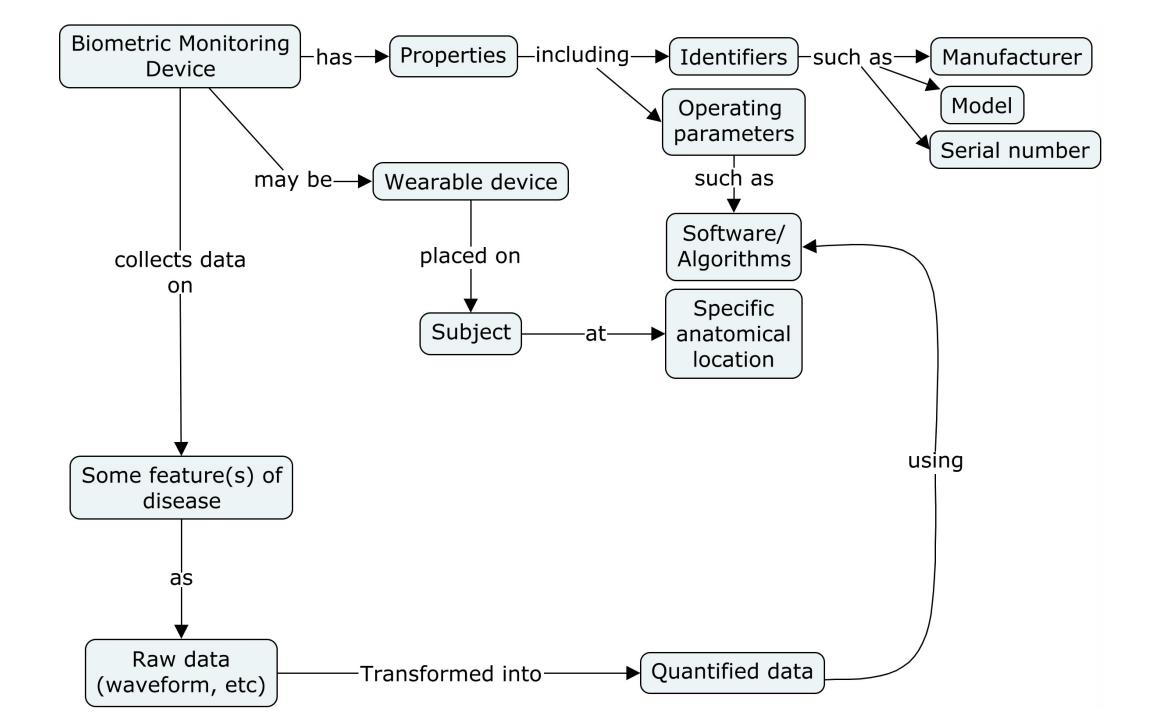
Relating device/subject records in CDISC SDTM

SPDEVID= Device ID LNKID: Link ID REFID: Reference ID

nv.xpt

1											
 Row	STUDYID	DOMAIN	USUBJID	SPDEVID	NVSEQ	NVREFID	NVLNKID	NVTESTCD	NVTEST	NVORRES	NVORRESU
2	ABC123	NV	AD01-101	22	2	1236	03	SUVR	Standard Uptake Value Ratio	1.17	RATIO
3	ABC123	NV	AD01-102	22	1	1237	04	SUVR	Standard Uptake Value Ratio	1.21	RATIO
4	ABC123	NV	AD01-102	22	2	1237	04	SUVR	Standard Uptake Value Ratio	1.78	RATIO
5	ABC123	NV	AD01-103	44	1	1238	05	SUVR	Standard Uptake Value Ratio	1.52	RATIO
6	ABC123	NV	AD01-103	44	2	1238	05	SUVR	Standard Uptake Value Ratio	1.63	RATIO

ag.xpt


	4										
Ro	v STUDYID	DOMAIN	USUBJID	AGSEQ	AGLNKID	AGTRT	AGCAT	AGDOSE	AGDOSEU	AGSTDTC	
1	ABC123	AG	AD01-101	1	03	18F-Florbetapir	AMYLOID TRACER	370	MBq	2012-05-22T08:40:00	
2	ABC123	AG	AD01-102	1	04	11C-PiB	AMYLOID TRACER	370	MBq	2012-05-22T07:20:00	
3	ABC123	AG	AD01-103	1	05	FDG	GLUCOSE TRACER	400	MBq	2012-05-22T08:30:00	

di.xpt

Row	STUDYID	DOMAIN	SPDEVID	DISEQ	DIPARMCD	DIPARM	DIVAL
1	ABC123	DI	22	1	DEVTYPE	Device Type	PET/CT
2	ABC123	DI	22	2 MANUF		Manufacturer	Siemens
3	ABC123	DI	22	3	MODEL	Model	TRIO
4	ABC123	DI	44	1	DEVTYPE	Device Type	PET
5	ABC123	DI	44	2	MANUF	Manufacturer	Siemens
6	ABC123	DI	44	3	MODEL	Model	INVEON

du.xpt

Row	STUDYID DOMAIN USUBJID		SPDEVID	DUSEQ	DUREFID	DUTESTCD	DUTEST	DUORRES	UORRES DUORRESU		VISITNUM	DUDTC	
1	ABC123	DU	AD01-101	22	1	1236	ANTPLANE	Anatomical Plane	SAGITTAL			1	2012-05-22T09:30:00
2	ABC123	DU	AD01-101	22	2	1236	INTSPACE	Interslice Spacing	1	mm		1	2012-05-22T09:30:00
3	ABC123	DU	AD01-101	22	3	1236	SFTWRVER	Software Version	5.1			1	2012-05-22T09:30:00
4	ABC123	DU	AD01-101	22	4	1236	STHICK	Slice Thickness	5	mm		1	2012-05-22T09:30:00
5	ABC123	DU	AD01-101	22	5	1236	PIXSPCX	Pixel Spacing X	2	mm		1	2012-05-22T09:30:00
6	ABC123	DU	AD01-101	22	6	1236	PIXSPCY	Pixel Spacing Y	2	mm		1	2012-05-22T09:30:00
7	ABC123	DU	AD01-101	22	7	1236	AQMTRXSZ	Image Acquisition Matrix Size	256X256			1	2012-05-22T09:30:00
8	ABC123	DU	AD01-101	22	8	1236	FLDVIEW	Field of View	280X280	mm		1	2012-05-22T09:30:00
9	ABC123	DU	AD01-101	22	9	1236	NUMSLICE	Number of Slices	125			1	2012-05-22T09:30:00

- What is the beginning-to-end life cycle of these data?
- What happens to the raw data beyond interpretation by software?
- What's important to capture?
- How do we begin filling out the details on the previous slide?