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Abstract

The concept of combinatorial biomarkers was conceived around 2010: it was
noticed that simple biomarkers are often inadequate for recognizing and char-
acterizing complex diseases. It was proposed that biomarker-combinations
should rather be considered and looked for. Here we present an algorith-
mic search method for complex biomarkers which may predict or indicate
Alzheimer’s disease (AD) and other kinds of dementia. In addition to com-
monly used statistical methods, we applied adequatly modified data min-
ing techniques, namely association rule mining, that is capable to uncover
implication-like logical schemes with quality scoring. The existing algo-
rithms were modified to adopt the special needs of automatic combinatorial
biomarker discovery: our DWARF program is capable finding multi-factor
relevant association rules automatically. We applied the new DWARF pro-
gram for a database of the Tucson, Arizona based Critical Path Institute
CAMD (Coalition Against Major Diseases) AD database. The database
contains the detailed laboratory- and cognitive test-data of more than 6000
patients from the placebo-arm of multi-million dollar clinical trials of large
pharmaceutical companies, and consequently, the data is much more reli-
able than numerous other databases for dementia, derived from moderately
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funded research projects of probably looser standards. Some of the results
reinforce known findings, therefore validate the method itself, while others
can enlighten still unknown relations and biomarkers of dementia. We need
to add that our goal was to find new biomarkers for Alzheimer’s disease, but
the database mostly contained cognitive test results that imply only the pres-
ence of dementia, and not necessarily Alzheimer’s disease itself. The source
code of the new DWARF program is publicly available in the supporting
on-line information.

1. Introduction

Dementia is presently a major problem of high-income countries and also
an increasing concern of low income nations worldwide. It is sporadic before
age 60, but is doubled by every five years of age thereafter [1, 2]. About 40
percent of the population over 90 is affected, and up to 20 percent of popula-
tion between 75 and 84 suffers from this condition [3, 4]. The most common
cause of dementia is Alzheimer’s disease (AD). The earliest symptoms of AD
include memory problems; disorientation to time or place; and difficulty with
calculation, language, concentration and judgment. As the disease evolves,
patients may have severe behavioural abnormalities and may even become
psychotic. In the final stages of the disease the sufferers are incapable of
self-care and become bed-bound, even for years or even decades.

The causes and mechanisms of AD are not yet fully clarified. The under-
lying pathologic abnormalities include:

• Reduced levels in neurotransmitters, behindering inter-neuronal com-
munication;

• Beta-amyloid plaques in and around synapses;

• A modified form of tau-protein shows accumulations in the neurons
(neurofibrillary tangles).

Plaques and tangles mostly develop in brain areas vital for intellectual func-
tions.

The diagnosis of AD in the great majority of the cases is done by clinical
criteria, using standardized questionnaires [5]. Generally accepted evidences
show that more than 20 years before those clinical signs the neuropathologic
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damage begins [6], and by the time it is diagnosed, a large part of the neurons
are already irreversibly lost.

In the last years, by the combination of the analysis of cerebrospinal
fluid, clinical signs and neuroimaging techniques a quite reliable diagnostic
method emerged [7]. The method, however, is prohibitively expensive, it is
not an early warning-type biomarker, and does not seem to be applicable for
wide-scale screening of the senior population.

Very recently, using the combination of usual clinical laboratory data,
cognitive impairment questionnaires and blood-based proteomics assays was
reported to reliably diagnose AD, without neuroimaging or cerebrospinal
fluid assays [8, 9]. However, early warning biomarkers are still need to be
found.

The final goal of ours is finding new combinatorial biomarkers for
Alzheimer’s disease. In this paper we report our results that may be used to
reach this final goal; but presently we are able to show only that certain sets
of laboratory data may make the dementia (and not the AD) more probable,
and certain other sets may make the dementia less probable.

There are several large databases of Alzheimer’s disease available for re-
searchers. The quality of their data obviously depends on the methodology
of the research that produced the database in question. Perhaps the most
well-organized, strictly overseen and rigorously documented experiments are
conducted by the order of large pharmaceutical companies in hospitals and
clinics in phase 1, 2 and 3 drug trials. Unfortunately, the detailed results of
those trials are seldom published (especially those that correspond to unsuc-
cessful drug trials) since they are owned by the companies that ordered the
trials.

The Tucson, Arizona-based Critical Path Institute made available in
their Alzheimer’s disease and Parkinson’s disease database the results of the
placebo-arm of numerous multi-million dollar clinical trials, conducted by
the order of large pharmacological companies [10, 11, 12]. The data of the
placebo-line of the trials does not contain proprietary information concerning
the effects of the novel drugs under trial, but it does contain reliable, well-
organized laboratory and cognitive test-data, presumably in much higher
quality than other, larger, but perhaps less strictly conducted and controlled
studies for AD.

Data used in the preparation of this article were obtained from the Coali-
tion Against Major Diseases (CAMD) database [10]. In 2008, Critical Path
Institute, in collaboration with the Engelberg Center for Health Care Reform
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at the Brookings Institution, formed the Coalition Against Major Diseases
(CAMD). The Coalition brings together patient groups, biopharmaceutical
companies, and scientists from academia, the U.S. Food and Drug Adminis-
tration (FDA), the European Medicines Agency (EMA), the National Insti-
tute of Neurological Disorders and Stroke (NINDS), and the National In-
stitute on Aging (NIA). The Coalition Against Major Diseases (CAMD)
includes over 200 scientists from member and non-member organizations.
The data available in the CAMD database has been volunteered by CAMD
member companies and non-member organizations.

In contrast with more conservative statistical methods, we applied data
mining techniques for the data analysis and combinatorial biomarker search.
Data mining, as was defined in [13], is the analysis of large observational sets
of data for finding new, still unsuspected relations with novel, usually high-
throughput methods. Frequently, data mining uses large data sets collected
for some other uses than the data mining analysis [13].

Simple biomarkers (e.g., the high glucose level in diabetes) show a phys-
iological condition, related to the appearance, or the status of a disease.
The concept of combinatorial biomarkers appeared around 2010, and numer-
ous authors simply use the term in the following sense: If - say - the high
concentration of all of the molecules A, B and C characterizes well a certain
condition X (and the high concentration of any subset of the set A,B,C would
not), then they say that A,B,C is a combinatorial biomarker of condition X
[14]. In [9], by applying proteomics assays, a 30-protein set was identified as
combinatorial biomarker of AD.

We intend to discover more involved combinatorial biomarkers, that may
contain clinical laboratory data and psychiatric test data, and we count not
only on the positive (i.e., high concentration or appearance of a certain value),
but also their lack, or low concentration. We start with frequent item set
analysis, then with association rule mining [13], with a new methodology, that
discover more complex, combinatorial biomarkers only if they have stronger
implications than the simpler biomarkers.

Therefore, our DWARF program will not produce artificially complex
biomarkers: the more complex is the new biomarker the more valid is the
new implication.

1.1. Association Rule Mining

Our research group was among the firsts applying association rule mining
in molecular biology [15]. Recently, association rule mining gains applications
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in drug discovery [16], in the design of clinical trials [17], and most recently,
also in image analysis in Alzheimer’s research [18].

Association rule mining is a field of data mining [13], developed by mar-
keting experts for discovering implication-like rules in uncovering and cus-
tomer behavior [19], withouta priori assumptions on this behaviour. We
intend to apply the method for laboratory and cognitive test data from
the CAMD database [10]. We analyzed how the presence/absence/severity
of cognitive impairment could be detected from combinations of known
biomarkers, demographic information, measurements of vital signs. As an
example, consider this expression:

sodium = high ∧ (protein = high ∨ age ≥ 60) =⇒ mmse total ≤ 15 (1)

This rule states that if blood sodium is high, AND urine protein is high
OR age is at least 60, then the total MMSE (Mini Mental State Examination)
score will be at most 15 out of 30 (i.e.,∧ stands for the logical AND and ∨
stands for the logical OR). Let us call the left-hand side (abbreviated by LHS)
of the expression a combinatorial marker of the right-hand side (abbreviated
by RHS). Thus the statement above can be reformulated as follows: high
serum sodium combined with either high urine protein or age of at least 60
is a marker of a total MMSE score less than or equal to 15.

We considered all the possible logical expressions according to a given
pattern, and assigned numerical values to them that indicated the reliability
and validity of the logical rules. Then we filtered and sorted the vast amount
of possible rules according to these numerical criteria, and selected the best
ones. We changed a simpler rule to a more complex rule only if the more
complex rule has higher reliability or validity than the simpler rule (see the
next section for the exact definitions).

2. Methods

Our data source, which will be referred to as CAMD from now on [10],
was provided by the Coalition Against Major Diseases, and consisted of the
placebo arm of several drug trials. Over 6000 subjects participated in these
trials including demented and not demented people of various age, sex, race
and ethnics (see Table 4) for basic statistics). Standard laboratory data (in-
cluding 300 different values in blood or urine, at different visit days) were
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collected for the subjects altugether, though each person was tested for only
about 30 different values. The cognitive and psychological status of the sub-
jects was measured at different times by standardized questionnaires ADAS-
COG, ADCS-ADL, MMSE, NPI and SIB. In addition, some genetic tests
were performed, e.g., ApoE and MTHFR genotypes were recorded. Vital
sign measurements (BP, pulse rate, respiratory rate and body temperature)
were also taken. Results concerning this dataset will be described in greater
detail below.

We transformed this large dataset into a conveniently processable form.
The CAMD database contained several rows describing one person and these
were scattered between multiple data tables. So we collected the essential
data from CAMD into one single table: this simplified table contained only
one row for each subject.

If a subject was tested on different visit days, then we took the average of
these test results. The resulting main tables for CAMD consisted of around
170 columns (record fields) and 6000 rows (entries).

Our main method of processing these two resulting tables was association
rule mining. First, we took a given pattern like �∧ (�∨�) =⇒ �. Notice
that here the LHS (Left Hand Side) is in conjunctive normal form (multiple
OR clauses ANDed together). This pattern can be described as “1 2”, as the
first OR clause has one sub-clause and the second one has two. This pattern
matches all statements of the following kind: “if property A is present and
property B or property C is present, then property D is present”.

Since we are interested in implication-like association rules that indicate
factors implying normal or demented mental state, we made restrictions on
which data columns can occur on the LHS (Left Hand Side) and the RHS
(Right Hand Side). Laboratory data, sex, race and ethnics were allowed
on the on the LHS, and columns directly indicating mental status on the
RHS. Then we gave numerical constraints on the “goodness” of a rule – thus
introducing an ordering on the rules. Finally we tried to fill in all the void
boxes in all possible ways to find the best rules.

If done without any optimization, this process would have yielded a vast
amount of different rules that needed to be evaluated ”by hand”. Even just
enumerating all the possible matches to this pattern would have required
enormous computational resources. Consequently, we needed to make the
computation feasible: we used a branch-and-bound approach similar to the
Apriori Algorithm [13]: if certain values for the first two boxes made a rule
fail our constraints – regardless of what would be written in the third box
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–, then we threw out the rule and did not bother checking all the possible
values for the third box. (An analogue could be cutting a tree in a clever
way: one does not bother removing all the little twigs one by one, but rather
cuts the trunk.) This technique saved us considerable computational time.

The association rule mining was done with our own program written
in programming language D, named DWARF (D-written Association Rule
Finder). The source code of DWARF and its documentation can be found
in the supporting on-line material. D is a relatively new programming lan-
guage offering both safety (through garbage-collection) and performance (it
compiles to native code), that’s why it was chosen.

We calculated various standard numerical values for all association rules,
which would indicate their validity. First, we defined the universe of a rule:
this is the set of the database rows where all columns present in the rule
have a known value. For example, as we mentioned before, not all subjects
were tested for everything, so our database contained a large amount of N/A
entries. For testing the validity of a rule, only those rows could be taken into
account, where there is no N/A written to any of the columns participating
in the rule.

For evaluating the validity of a rule, we continued to work with only its
universe and ignored all other rows in the database. Next, we calculated the
LHS support, RHS support and support of a rule. The LHS support is the
number of the rows where the LHS is true, the RHS support is the number of
the rows where the RHS is true, and the support is the number of the rows
where both the LHS and the RHS are true.

Then, we calculated the confidence, lift, leverage and χ2-statistics for a
rule. The confidence is defined as the conditional probability of the RHS,
assuming that the LHS is true. In our example, confidence describes the
chance having a low MMSE score, if one has high serum sodium combined
with high urine protein or age at least 60. The lift shows how many times the
presence of the LHS increases the probability of RHS. Generally it indicates
how big a risk factor the LHS is – though it is not certain that the LHS
causes the RHS, but they both may be just consequences of a phenomenon
in the background [13].

The leverage is the difference between the observed probability of both the
LHS and RHS being true, and the estimated probability we get by assuming
that the LHS and RHS are independent events. Therefore, it indicates some
dependency between the LHS and the RHS. Finally, the χ2-statistic is a well-
known measure of the estimated dependence of the indicator variables of the
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LHS and RHS. The χ2-statistic is greater than 3.84 if and only if the p value
is less than 0.05.

The following table formalizes some of the above definitions. Here P
denotes the probability measure, P (A|B) denotes the conditional probaility
of event A on condition B:

Confidence = P (RHS|LHS)

Lift =
P (RHS|LHS)

P (RHS)

Leverage = P (RHS ∧ LHS)− P (RHS)P (LHS)

For the CAMD database the minimum acceptable values were set as fol-
lows: universe = 600, support = 65, confidence = 0.5, lift = 1.2, χ2 = 3.84.
In particular, we recorded rules on data that were measured on at least 600
subjects. We defined the goodness of a rule to be equal to its lift.

Therefore we listed association rules of lift at least 1.2, i.e., only those
rules were listed where the LHS increased the probaility of RHS with at least
20

As one of the most significant novelty in our approach, we filtered out
rules which are too complicated: The DWARF program threw out elementary
clauses from the LHS if the overall goodness (i.e., the lift) of the rule did not
decrease by more than 2%, then threw out the whole rule if its numerical
values dropped below our constraints during the simplification process. In
other words, we sacrificed some of the lift for simplicity.

The program was run on a 16-core machine, so we divided the job into
20 parts and made a shell script spawn 20 simultaneous instances of the
program. We chose a number bigger than the number of cores because the
branch-and-bound technique makes runtime rather unpredictable, so some
threads may finish earlier than others. Each thread looked for the 2000 best
rules of its job slice. Then the results were merged into one text file.

Having listed the best rules, we also tried to determine whether the ele-
mentary clauses (like lb ast = h, lb folate = l, etc.) have positive or negative
effect on mental state. Therefore we counted their appearances on LHS, and
classified these occurrences by the nature of the RHS: does it indicate normal
cognition or rather dementia? We counted how many times an elementary
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clause occurred on the LHS of a rule when the RHS indicated a positive men-
tal state, and how many times it occurred in rules where the RHS showed a
negative state. Thus, in addition to mining rules whose LHS could probably
serve as good combinatorial risk factor of dementia, we estimated the con-
tribution of the individual clauses, for example “protein=high” to the onset
of cognitive impairment.

For an elementary clause, Positive score was the number of rules with
positive RHS, and Negative score was the number of rules with negative
RHS. Then we divided Positive score by Negative score and then got a ratio
we called Positivity . We only considered elementary clauses that occurred in
at least 20 rules, and we classified those with positivity at least 4 as Positive,
while those with positivity at most 1/4 as Negative.

To summarize our method: we searched for combinatorial biomarkers
using a branch-and-bound algorithm for association rule mining; then made
statistical analysis regarding elementary clauses.

3. Results

The program outputs over 200 rules from the CAMD database. Selected
rules, with decreasing lift (i.e., ”goodness”) order, are listed in Table 4, (the
whole set of rules are presented as Table S1 in the on-line supporting mate-
rial).

Observe that, on the LHS, all clauses concerning biomarkers state that
something is “too high” or “too low”. That’s because we thought that the
best indicators can be values out of range. Normal values could probably
indicate good health and thus normal cognition.

The first rule in Table 4 was that of the best lift: It can be interpreted in
the following way: It is likely that if aspartate aminotransferase (AST) level
is elevated, and subject is female, then her total MMSE score will be less than
15. Note that for all rules of ours do not necessarily mean a causal relation
between the LHS and RHS, as both the LHS and RHS can be consequences
of an unknown process in the background.

The second rule in Table 4 states that “if aspartate aminotransferase
(AST) level is elevated, and subject is more than 65 years old, then her/his
total MMSE score will be less than 15”. The third rule states that “if serum
sodium is elevated, and subject is more than 65 years old, then her/his total
MMSE score will be less than 15”.
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From these rules we can conclude that elevated AST or sodium combined
with relatively old age might be a good indicator (or even the cause) of
mental decline.

Elementary clauses with positive effect on normal cognition are listed in
Table 4.

Elementary clauses with negative effect on normal cognition (ordered by
negativity increasing) are listed Table 5.

4. Discussion

Among the 238 rules identified, 51 rules had lift values exceeding 2.00.
Those rules exceeding even the 3.00 lift value had one thing in common:
the LHS contained the premise lb ast=h These rules suggest that having
higher levels of serum aspartyl aminotransferase (AST) may predispose to
an impaired mental status characterized by a mini mental state examination
score (MMSE) less than 15 points. Serum AST and alanyne aminotrans-
ferase (ALT) levels derive from the liver and their values may be elevated in
a number of cases of liver injury or damage spreading from acute or chronic
viral infections to alcohol induced or non-alcoholic steatohepatitis. It is in-
teresting to note that elevated serum levels of AST, more than of ALT were
associated with impaired mental status. Although mild elevations in serum
levels of AST and ALT are nonspecific to the etiology of liver injury, certain
alteration-patterns in these parameters may reflect the nature of the hepatic
disease. For instance, the value of the AST/ALT ratio, also known as the De
Ritis ratio is approximately 0.8 in normal subjects, however a ratio exceeding
2.00 is suggestive to alcoholic hepatitis. Therefore we scanned the subjects
with high AST values for higher than 2 AST/ALT ratio: we have found only
10 subjects satisfying both conditions. Consequently, we may assume, that
high serum AST in the study subjects are not typically accompanied with
high De Ritis ratio, that may suggest alcoholic hepatitis.

The association of impaired liver function with mental decline can be illu-
minated by two perspectives. On one hand, impaired liver function might be
insufficient to prevent the brain from the effects of certain neurotoxins e.g.,
ammonia. This happens in the case of hepatic encephalopathy (HE), when
severe liver damage resulting in acute liver insufficiency cannot detoxificate
ammonia and other neurotoxins. On the other hand, the association of el-
evated AST/ALT ratio with impaired mental status proposes that another
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obscure element (e.g., chronic alcohol consumption) might be the factor re-
sponsible for both cognitive and metabolic damages. Our results raises the
possibility of a pathogenetic linkage between liver function and mental status
in patients with AD. Such linkage has also been proposed by other studies
[20, 21]. One study concludes that peripheral reduction of β-amiloid is suf-
ficient to reduce brain β-amiloid and proposes that β-amiloids, which are of
major pathogenic importance in AD may originate from the liver [20]. An-
other research found that deficient liver production of a neuroprotective fatty
acid, docosahexaenoic acid correlates with impaired cognitive status in AD
patients [21].

Another identified rule states that among patients older than 65 years of
age, higher levels of serum sodium concentrations increases the possibility
with a 2.90 lift to achieve less than 15 points in MMSE. Net water loss is
responsible for the majority of cases of hypernatremia [22]. A recent pub-
lication examining the causes and comorbidities in patients older than 65
years has found that the most common cause of community-acquired hyper-
natremia is dehydration due to reduced oral intake [23]. More interestingly,
they found that the most common comorbidity in this patient group was
AD, present in 31.4% of patients with hypernatremia [23]. Hydration sta-
tus has a significant impact on the volumes of grey and white matter of the
brain and on the quantity of the cerebrospinal fluid as a hallmark of ven-
tricular enlargement [24]. The pattern of shrinkage in white matter volume
and increase of the ventricular system due to dehydration is consistent with
the structural brain changes observed during the progression of AD [24]. In
another study, patients with AD underwent bioelectrical impedance vector
analysis to assess the body cell mass and hydration status related to AD
[25]. Results demonstrated a tendency towards dehydration in patients with
AD [25]. Although the association of dehydration and AD is supported by
these publications, the specific pathogenic nature of this association remains
obscure [23, 24, 25].

More interestingly, we have found that some factors, considered to be
risk factors in heart disease, may imply good cognitive status: we have found
data of the positive effects of high serum cholesterol levels and high blood
pressure.

We also need to mention the positive effects of high levels of B12 vitamin
in blood serum.

It is not surprising that young age, high calcium, low chloride, low sodium
have a positive effect on cognition. Male sex was probably classified as pos-
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itive because Alzheimer’s disease seems to be more frequent among women.
Low pulse generally indicates good health, now it also seems to positively af-
fect cognition. On the other hand, low temperature or high respiratory rate
seem to contribute to mental decline (or at least indicate its presence). A
more interesting part is that excess level of certain liver enzymes (AST, ALT
and ALP) have a negative effect on cognition. It is possible that these high
levels may be caused by some drugs treating dementia, especially Tacrine,
but we should also consider the possibility that dementia and liver function
might be related in some so far unknown way.

Another interesting result is that high Mean Corpuscular Hemoglobin
and low Mean Corpuscular Hemoglobin Concentration seem to indicate nor-
mal cognition. This together means too large red blood cells with a lot of
hemoglobin contained per cell. High eosinophil concentration or low lym-
phocite concentration also seem to be related to mental decline. High white
blood count also seems to have a negative effect, probably because it indi-
cates some infection, and it is not surprising that general bad health is in
connection with cognitive impairment. High serum glucose also seems to be
a negative factor. It has been suggested that diabetes contributes to mental
decline.
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Tables

Table 1: Basic statistics on the subjects of the CAMD data

Age distribution Gender distribution MMSE distribution

A: up to 65 years 1093 Female 3315 A: severe cog. impairment 255
B: 66-75 years 2070 Male 2653 B: moderate cog. impairment 611
C: 76-85 years 2408 C: mild cog. impairment 3224
D: more than 85 397 D: normal cognition 1352
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Table 2: Several association rules of the highest lift

sex=F & lb_ast=h ---> mm_total=AB

Universe: 1546, LHS support: 96, RHS support: 346, Support: 72

Confidence: 0.75, Lift: 3.35116, Leverage: 0.0326746, X^2 stat: 50.4035

3.35116

lb_ast=h & age=BCD ---> mm_total=AB

Universe: 1546, LHS support: 117, RHS support: 346, Support: 84

Confidence: 0.717949, Lift: 3.20794, Leverage: 0.0373965, X^2 stat: 40.3832

3.20794

lb_sodium=h & age=BCD ---> mm_total=AB

Universe: 2477, LHS support: 100, RHS support: 556, Support: 65

Confidence: 0.65, Lift: 2.89577, Leverage: 0.0171794, X^2 stat: 80.1384

2.89577

lb_vitb12=h & age=ABC ---> mm_total=D

Universe: 3115, LHS support: 115, RHS support: 919, Support: 79

Confidence: 0.686957, Lift: 2.32848, Leverage: 0.0144694, X^2 stat: 60.3522

2.32848

lb_mch=h & age=BCD ---> mm_total=D

Universe: 2604, LHS support: 93, RHS support: 792, Support: 65

Confidence: 0.698925, Lift: 2.29798, Leverage: 0.0140992, X^2 stat: 59.7889

2.29798

lb_mchc=l & lb_chol=h ---> mm_ori=E

Universe: 1302, LHS support: 84, RHS support: 542, Support: 74

Confidence: 0.880952, Lift: 2.11624, Leverage: 0.0299787, X^2 stat: 18.3813

2.11624

lb_wbc_blood=h & (lb_bili=h or bpdia=h) ---> mm_attcal=B

Universe: 2821, LHS support: 132, RHS support: 1063, Support: 70

Confidence: 0.530303, Lift: 1.40732, Leverage: 0.00718192, X^2 stat: 31.7198

1.40732
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Table 3: Legends for Table 2

sex=F Subject is female
lb ast=h Serum Aspartate Aminotransferase level is too high
age=BCD Subject is more than 65 years old
lb sodium=h Serum sodium is too high
lb vitb12=h Serum B12 vitamin is too high
age=ABC Subject is at most 85 years old
lb mch=h Mean Corpuscular Hemoglobin is too high
lb mchc=l Mean Corpuscular Hemoglobin Concentration is too low
lb chol=h Serum cholesterol is too high
lb wbc blood=h White blood count is too high
lb bili=h Serum indirect bilirubin is too high
bpdia=h Diastolic blood pressure is too high
mm total=AB MMSE total score is less than 15
mm total=D MMSE total score is at least 24
mm ori=E MMSE orientation score is at least 8
mm attcal=B MMSE attention and calculation score is at most 1

Table 4: Elementary clauses with positive effect on normal cognition (ordered by positivity
decreasing)

lb mchc=l Mean Corpuscular Hemoglobin Concentration is too low
lb mch=h Mean Corpuscular Hemoglobin is too high
age=ABC Subject is at most 85 years old

sex=M Subject is male
pulse=l Pulse is too low
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Table 5: Elementary clauses with negative effect on normal cognition (ordered by nega-
tivity increasing)

age=BCD Subject is more than 65 years old
lb eos=h Eosinophils (particle concentration) is too high
lb lym=l Lymphocites (particle concentration) is too low
lb wbc blood=h White blood count is too high
lb gluc=h Serum glucose is too high
lb alp=h Serum alkaline phosphatase (ALP) is too high
lb cl=h Serum chloride is too high
lb ca=l Serum calcium is too low
age=D Subject is more than 85 years old
age=CD Subject is more than 75 years old
lb sodium=h Serum sodium is too high
temper=l Temperature is too low
resp=h Respiratory rate is too high
lb alt=h Serum alanine aminotransferase (ALT) is too high
sex=F Subject is female
lb ast=h Serum aspartate aminotransferase (AST) is too high
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