Learnings from Parkinson's disease: Critical role of Biomarkers in successful drug development

Ken Marek Coalition Against Major Diseases and FDA 2014 Annual Scientific Workshop Oct 2014

Disclosure

- Co-founder on Molecular Neuroimaging LLC PET and SPECT imaging services
- Consultant –BMS, GEHC, Lilly, Merck, Navidea, Piramal Pfizer, Sanofi, LTI

Institute for Neurodegenerative Disorders

PD - Major Challenges

- Progression in inevitable Motor and non-motor disease features
- Heterogeneity is a hallmark of disease –Subsets of PD with likely different etiology, disease course, response to therapy
- Degeneration begins long before symptoms arise -Where does PD begin, when does PD begin, how does PD progress during the pre-diagnostic period

WHY BIOMARKERS

- Disease Mechanism
- Drug Mechanism/Drug dosage
- Improve diagnostic accuracy (enrich a study population)
- Identify subsets that might develop clinical outcomes
- Identify subsets that might respond to therapy
- Repeated measure to assess progression
- Eliminate confounding of symptomatic therapy
- Evaluate efficacy of disease modifying therapeutic
- Reduced sample size and more rapid assessment of effect -reduce cost and improve efficiency of clinical studies
- Assist in regulatory approvals
- Measurement prior to onset of symptoms
- Used to correlate clinical, imaging, genetic and biofluid biomarkers
- Provide objective quantitative outcomes at multiple clinical sites

Natural History of PD

Clinical Ratings

Natural History of PD

PD Biomarker Candidates

CLINICAL MARKERS

- Cognition
- Behavioral
 - Depression
 - Apathy
 - Anxiety
 - ICD
- Autonomic
 - Constipation
 - Bladder
 - Sexual
 - Cardiac
- Olfaction
- Sleep- RBD
- Skin
- Motor Analysis
- Speech

IMAGING - PHENOTOMICS

- **CDA-SPECT/PET** Synuclein,
- MRI-DII/RS, volumetrics
- Nigral Ultrasound

BIOLOGICS

- •Blood, CSF, Urine
- •Alpha-synuclein, DJ1, Urate, Tau, Beta-Amyloid, ApoA1,
- <u>'OMICS'</u>
- •RNA Profiling
- DNA exome sequencing

GENETICS

•Synuclein, LRRK2, GBA, Parkin, DJ-1, Pink 1, Tau

Pre-synaptic Dopaminergic Imaging

Nigral Dopamine loss - Face validity

Reduction in early PD 50% Put

Reduction Put>Caud

Reduction asymmetric

Correlation with severity (UPDRS)

Reduction in Prodromal

Monitor PD progression ¹²³Ι β-CIT-DAT

¹⁸F AV-133-VMAT2

¹⁸F-DOPA-AADC

Healthy

+Parkinson disease

Baseline PRECEPT -% Age expected Putamen [123I] ß-CIT uptake

Subject Number

PRECEPT study - FOLLOWUP IMAGING AND CLINICAL OUTCOMES BY SWEDD STATUS AT BASELINE

	SWEDD >80%	DAT Deficit	
		<=80%	
% Change [¹²³ I] B-CIT	N = 72	N = 629	
Striatum:	-0.2 (12.2)	-8.5 (11.9)	*
Caudate:	1.0 (13.1)	-6.1 (12.5)	*
Putamen:	-1.9 (12.2)	-13.1 (15.1)	*
CLINICAL	N = 91	N = 708	
Change in Total UPDRS	0.5 (6.9)	10.5 (8.9)	*
Change in Motor UPDRS	-0.4 (5.0)	7.0 (6.9)	*
Need for DA treatment at 12 mo	16.7% (CI 10.2,	50.9% (CI	*
	26.6)	47.2,54.8)	

Mean (SD) for Change in [¹²³I] β -CIT and UPDRS, Percent (CI) for need for DA treatment. * indicates p < 0.01

PRECEPT Dx at Termination

DIAGNOSIS	SWEDD Subjects	DAT DEFICIT Subjects
DAT Deficit Parkinsonism		
Confident PD	40 (44%)	609 (86%)
PD + Another	2 (2%)	11 (2%)
PSP	0 (0%)	5 (1%)
Corticobasal Degeneration	1 (1%)	2 (<1%)
Lewy Body Disease	2 (2%)	14 (2%)
Multiple System Atrophy	4 (4%)	37 (5%)
Hemiparkinson Syndrome	0 (0%)	1 (<1%)
Juvenile Parkinsonism	1 (1%)	2 (<1%)
Total	50 (55%)	681 (96%)

DIAGNOSIS	SWEDD Subjects	DAT DEFICIT Subjects
Pseudo- Parkinsonism		
Essential Tremor	15 (17%)	5 (1%)
Dopa-Responsive Dystonia	1 (1%)	1 (<1%)
Alzheimers	0 (0%)	2 (<1%)
Normal Pressure Hydrocephalus	2 (2%)	0 (0%)
Psychogenic Illness	3 (3%)	1 (<1%)
Vascular Parkinsonism	5 (6%)	13 (2%)
Other Neurological	5 (6%)	3 (<1%)
No PD or Neurological	9 (10%)	1 (<1%)
Total	40 (45%)	26 (4%)

Diagnoses of 707 DAT deficit and 90 SWEDD subjects by PRECEPT site investigators unaware of imaging data at termination (approx 21 month f/u)

PRECEPT SWEDD 6 yr follow-

PRECEPT study – Follow up at 72 months

SWEDD N=42, % Ann Change from Baseline - 1.2%

DAT Deficit N=374, % Ann Change from Baseline - 5.1%

Natural History of PD

Clinical Ratings

RBD and **Risk** of **PD**

Risk of PD in patients with idiopathic RBD is about 5%/yr
Increased risk extends for 10-20 years from RBD diagnosis

From Postuma, Neurology 2009

Decreased striatal dopamine transporters uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eyemovement sleep behaviour disorder: a prospective study A. Iranzo, F Lomeña, H Stockner, F Valldeoriola, I Vilaseca, M Salamero, JLMolinuevo, M Serradell, J Duch, J Pavía, J Gallego, K Seppi, B Högl, E Tolosa, Werner Poewe, J Santamaria, for the Sleep Innsbruck Barcelona (SINBAR) group Lancet, **2010**

17 of 43 RBD subjects demonstrate reduced DAT uptake

	Participants with IRBD (n=43)	Controls (n=18)	pvalue
Left putamen:occipital	2-46 (0-30)	2-68 (0-15)	0-007
Right putamen:occipital	2-42 (0-30)	2-62 (0-18)	0-012
Left caudate:occipital	2-98 (0-37)	3-17 (0-28)	0-057
Right caudate:occipital	3-01 (0-38)	3-30 (0-32)	0-008
Parts and an office and an			

Data are mean (SD) unless otherwise stated. IRBD= Idiopathic rapid-eye-movement sleep behaviour disorder. ³³⁹FP-CIT=³³⁹I-2β-carbomethoxy-3β-(4-lodophenyI)-N-(3-fluoropropyI)-nortropane.

Table 2: Mean striatal ¹²⁹I-FP-CIT uptake ratios in participants and controls

6/17 developed PD or DLB within 2.5 years

PARS: study scheme

PARS baseline – Sequential and increasingly intensive biomarker assessment PARS

PHASE 2 Clinic visit - 385

- 1. UPDRS
- 2. Diagnostic form
- 3. SCOPA-aut
- 4. Non-motor review
- 5. Neuropsych assess

Imaging visit- 303

- 1. DAT imaging
- 2. HRV
- 3. Blood, CSF sampling

PARS baseline DAT IMAGING -

	HYPOSMIC (≤15%) N=203		NORMOSMIC (>15%) N=100		
Age expected Putamen DAT density	N	Percent of cohort	Ν	Percent of cohort	
≤65% (DAT deficit)	23	11.3%	1	1.0%	p<.01
65% - <u>≤</u> 80% (Indeterminate)	35	17.2%	7	7.0%	p<.05
>80% (NO DAT deficit)	145	71.5%	92	92.0%	

• Hyposmia enriches for DAT deficit (28.5% compared to 8%)

• Severe DAT deficit highly enriches for DAT deficit (11.3% compare to 1%)

Longitudinal PARS

Phenoconversion rate is 61% at 4 years for subjects with a severe DAT deficit (<65% of age expected DAT uptake) at baseline. Progression of DAT deficit among hyposmics increase nuber of subjects with (<65% of age expected DAT uptake)

Natural History of Parkinson disease

Clinical Ratings

Time

PPMI Study Details: Synopsis

Study population	 400 de novo PD subjects (newly diagnosed and unmedicated) 200 age- and gender-matched healthy controls 70 SWEDD 100 Prodromal - Olfactory/RBD/LRRK2 500 LRRK2 - PD manifest and non-manifesting family members 100 Synuclein - PD manifest and non-manifesting family members Subjects will be followed for 3 to 5 years
Assessments/ Clinical data collection	 Motor assessments Neurobehavioral/cognitive testing Autonomic, Olfaction, Sleep DaTSCAN, AV133, Amyloid, DTI/RS MRI
Biologic collection /	 DNA, RNA Serum and plasma collected at each visit; urine collected annually CSF collected at baseline, 6mo 12 mo and then annually Samples aliquotted and stored in central biorepository
Data and Biosamples shared on website - www.ppmi-info.org	 >160,000 Data downloads > 35 Sample requests via BRC Ancillary study development

PPMI Baseline DAT SBR

Contralateral Putamen

Mean Striatum

Comparison of PPMI PD vs SWEDD subjects

- Demographics PD similar to SWEDD
 - Age, gender, fam hx, disease duration
- Motor assessment PD > SWEDD at Baseline
 - UPDRS No progression among SWEDD

- Non-Motor assessment SWEDD > PD
 - GDS, STAI, Scopa Aut
- Biomarker measure SWEDD similar to HS
 - Olfaction, CSF synuclein

Conclusion

- Subjects without evidence of DAT deficit do not demonstrate clinical or imaging progression.
- Subjects at risk for PD with DAT deficit have a high incidence of phenoconversion to motor PD.
- PPMI provides an opportunity to examine objective biomarkers in PD and SWEDD subjects and to further assess biomarker progression in prodromal subjects who have DAT deficit.